Based on complex function methods and a multipolar coordinate system, the scattering induced by a cylindrical cavity in a radially inhomogeneous half-space is investigated. Mass density of the half-space varies depending on the distance from the centre of the cavity while the shear modulus is always constant. The wave velocity is expressed as a function of radius vector and the Helmholtz equation is a partial differential equation with a variable coefficient. By means of a conformal mapping technique, the Helmholtz equation with a variable coefficient is transferred into its normal form. Then, displacement fields and corresponding stress components are deduced. Applying the boundary conditions, dynamic stress concentration factors around the cavity are obtained and analyzed. Typical numerical results are presented to demonstrate the distribution of dynamic stress concentration factors when influencing parameters are assumed.