The optical loss due to reflection is a significant barrier to the quantum efficiency of solar cells. In this work, an antireflective coating based on multilayers of metal oxides (TiO2, SiO2, ZnO) was prepared with the spin coating method. The coatings' antireflective, hydrophobic, and photocatalytic properties were examined. Based on the requirements met by the refractive index, a methodical selection of material and thickness for each layer was made in order to achieve near-zero reflection. The performance of different coating systems was examined by evaluating the percentage transmittance in the visible light range (400 nm - 800 nm). The optical properties of the obtained samples were studied with regard to transmittance and reflectance. The surface wettability of antireflective coating films was assessed by measuring the Water Contact Angle (WCA). The photocatalytic characteristics were evaluated by analyzing of the degradation of 0.02 mM Methylene Blue (MB) solutions after sunlight exposure for varying durations at midday.