Apoptosis is the primary mechanism through which most chemotherapeutic agents induce tumor cell death. The purpose of this study was to determine the extent to which blasts from children with leukemia undergo a uniform apoptotic death pathway in vivo. The expression of pro-and anti-apoptotic proteins p53, p21, MDM-2, BCL-2, BCL-X L , BCL-X S , and BAX, and caspase-3 activity was determined in circulating blasts collected from the peripheral blood of children with leukemia prior to, and at serial time points following chemotherapy. Culturing blasts ex vivo for 12 h assessed spontaneous apoptosis and the increment induced by chemotherapy. Baseline apoptosis varied between 3% and 29%. Twenty-four hours following chemotherapy the increase in the percentage of cells undergoing apoptosis ranged from Ͻ1% to 38%. Eleven of 20 patients who received initial treatment with a p53-dependent drug showed an increase in p53 expression. In these patients, the levels of p53 target genes were also increased. A uniform pattern of BCL-2 family protein expression was not observed and only a minority of samples showed a change that would favor apoptosis. We conclude that that the initial apoptotic response to chemotherapy in children with leukemia is variable involving both p53-dependent and p53-independent pathways.