BackgroundDetection of circulating cell-free DNA (cfDNA) has potential clinical value for assessing tumor biology in patients with hepatocellular carcinoma (HCC), yet many traditional assays lack robustness. This study was the first to apply a high-throughput sequencing platform to detect tumor-associated mutations in HCC from circulating tumor-derived DNA (ctDNA) and to evaluate the utility and feasibility of this approach.MethodsUsing the MiSeq™ system, plasma and matched tumor DNA samples were analyzed for hotspot mutations in the TERT, CTNNB1, and TP53 genes that had been verified as the most prevalent mutations in HCC. We compared tumor and plasma data and prospectively investigated the association between significant mutations detected in ctDNA and the patients' clinical outcomes.ResultsIn 41 patients, we detected tumor-associated mutations for HCC in 8 (19.5%) plasma samples. Among them, one showed a tumor-associated mutation in ctDNA but not in the tumor tissue which we used to detect. We also found that ctDNA with mutations could be detected more easily in patients who suffered vascular invasion (P=0.041) and predicted a shorter recurrence-free survival time (P<0.001). There was no relationship between detectable mutations and concentration of cfDNA (P=0.818).ConclusionsThe results of our study suggest that tumor-associated mutations detected in plasma are associated with vascular invasion and might be used to predict a shorter recurrence-free survival time for HCC patients. This kind of biomarker can overcome the limitations of tumor heterogeneity. Moreover, the diagnostic performance is improved if multiple mutations in different genes are combined.