Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants. Hence, universal treatments against coronaviruses and IAVs are hard to obtain due to genus differences (in the case of coronavirus) or subtypes (in the case of IAV), highlighting the need for novel antiviral therapies. Interestingly, iron oxide nanoparticles (IONPs) with a 10 nm core size and coated with the biocompatible dimercaptosuccinic acid (DMSA: DMSA-IONP-10) display antiviral activity against SARS-CoV-2 in vitro. Methods We analyzed the antiviral activity of DMSA-IONP-10 against SARS-CoV-2 infection in vivo, and against IAV infection in vitro and in vivo. Results DMSA-IONP-10 treatment of mice after SARS-CoV-2 infection impaired virus replication in the lungs and led to a mildly reduced pro-inflammatory cytokine induction after infection, indicating that these IONPs can serve as COVID-19 therapeutic agents. These IONPs also had a prophylactic and therapeutic effect against IAV in tissue cultured cells at non-cytotoxic doses, and a therapeutic effect in IAV-infected-mice, inhibiting viral replication and slightly dampening the inflammatory response after viral infection. As an exacerbated inflammatory response to IAVs and SARS-CoV-2 is detrimental to the host, weakening this response in mice through IONP treatment may reduce disease severity. Interestingly, our data suggest that IONP treatment affects oxidative stress and iron metabolism in cells, which may influence IAV production. Conclusion This study highlights the antiviral activity of DMSA-IONP-10 against important human respiratory viruses.
Background Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants. Hence, universal treatments against coronaviruses and IAVs are hard to obtain due to genus differences (in the case of coronavirus) or subtypes (in the case of IAV), highlighting the need for novel antiviral therapies. Interestingly, iron oxide nanoparticles (IONPs) with a 10 nm core size and coated with the biocompatible dimercaptosuccinic acid (DMSA: DMSA-IONP-10) display antiviral activity against SARS-CoV-2 in vitro. Methods We analyzed the antiviral activity of DMSA-IONP-10 against SARS-CoV-2 infection in vivo, and against IAV infection in vitro and in vivo. Results DMSA-IONP-10 treatment of mice after SARS-CoV-2 infection impaired virus replication in the lungs and led to a mildly reduced pro-inflammatory cytokine induction after infection, indicating that these IONPs can serve as COVID-19 therapeutic agents. These IONPs also had a prophylactic and therapeutic effect against IAV in tissue cultured cells at non-cytotoxic doses, and a therapeutic effect in IAV-infected-mice, inhibiting viral replication and slightly dampening the inflammatory response after viral infection. As an exacerbated inflammatory response to IAVs and SARS-CoV-2 is detrimental to the host, weakening this response in mice through IONP treatment may reduce disease severity. Interestingly, our data suggest that IONP treatment affects oxidative stress and iron metabolism in cells, which may influence IAV production. Conclusion This study highlights the antiviral activity of DMSA-IONP-10 against important human respiratory viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.