Background
Bovine viral diarrhoea virus (BVDV), an enveloped, single-stranded, positive-sense RNA virus from the
Flaviviridae
family, is a globally distributed bovine pathogen. BVDV infection in cattle, despite having a wide range of clinical manifestations, is invariably responsible for significant economic losses. To counteract these losses, various schemes to control and eradicate BVDV have been implemented, although safe drugs effectively inhibiting the replication of the virus are still lacking. The purpose of this study was to characterize the antiviral effect of naturally occurring proteins and peptide, such as bovine lactoferrin, chicken egg lysozyme, and nisin from
Lactococcus lactis
, used both individually and in combination, against the cytopathic NADL strain of BVDV in vitro. After determining the cytotoxicity level of each protein or peptide to MDBK cells, its antiviral effects were evaluated using virucidal, cytopathic effect inhibition and viral yield reduction assays. In addition, the influence of the tested compounds on the intracellular viral RNA level was determined.
Results
The highest efficacy among the single treatments was achieved by bovine lactoferrin, which was effective both at the early stages of viral infection and during its entire course, although the effect weakened over time. Nisin and lysozyme were effective at later stages of infection, and the intensity of their effect did not diminish with time. Nisin+lactoferrin and lysozyme+lactoferrin combinations demonstrated stronger antiviral effects than did the single substances. The nisin+lactoferrin mixture present during the whole period of infection produced the strongest anti-BVDV effect in our entire research on both the extracellular viral titre (titre reduction up to 2.875 log ≈ 99.9%) and the intracellular viral RNA level (reduction up to 89%), and this effect intensified over the incubation time.
Conclusions
The tested substances could be applied in bovine viral diarrhoea prevention and therapy, especially when used in combination.
Electronic supplementary material
The online version of this article (10.1186/s12917-019-2067-6) contains supplementary material, which is available to authorized users.