Ant Lion Optimizer (ALO) is a recent novel algorithm developed in the literature that simulates the foraging behavior of a Ant lions. Recently, it has been applied to a huge number of optimization problems. It has many advantages: easy, scalable, flexible, and have a great balance between exploration and exploitation. In this comprehensive study, many publications using ALO have been collected and summarized. Firstly, we introduce an introduction about ALO. Secondly, we categorized the recent versions of ALO into 3 Categories mainly Modified, Hybrid and Multi-Objective. we also introduce the applications in which ALO has been applied such as power, Machine Learning, Image processing problems, Civil Engineering, Medical, etc. The review paper is ended by giving a conclusion of the main ALO foundations and providing some suggestions & possible future directions that can be investigated.