Natriuretic Peptides and Their ReceptorsGuanylin peptides (GPs), guanylin (GN) and uroguanylin (UGN) belong to the family of natriuretic peptides (NPs), which includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). NPs activate membrane guanylate cyclases (GC), also called particulate GCs, and lead to the production of their second messenger cyclic guanosine monophosphate (cGMP), which acts on cGMP dependent protein kinases (PKG), cGMPregulated phosphodiesterases (PDE) and cGMP-gated channels.To this day, there are seven known GCs, spanning from GC-A to GC-G, all in the form of homodimers with each subunit composed of a chain of ~1500 amino acids. The intracellular domain has a juxtamembranous protein kinase-homology domain, an amphipathic α-helical separation domain and a cGMP forming GC domain on the C-terminal. The extracellular domain, which is connected to the intracellular part by short transmembrane domain, is a binding site for NPs [for a review, see 1]. GC-A is a receptor for ANP and BNP, which are mainly released from the atria due to atrial stretch. GC-A has a main role in maintaining blood pressure and intravascular volume by its effects on kidneys, adrenals, and central nervous system [2]. Other important effects on metabolism are the induction of lipolysis in human adipocytes [3], an increase in the energy expenditure in brown adipose tissue (BAT) and the "browning" of white adipose tissue (WAT) [4], secretion of the adipokine adiponectin [5] and the improvement of insulin sensitivity in muscle and liver [6,7]. GC-B is the receptor for CNP. Besides their expression in many tissues, their main role is in the physiological regulation of skeletal growth [8]. Other effects include embryonal axonal branching, oocyte maturation,