Recent advances in virtual reality (VR) technologies such as immersive head-mounted display (HMD), sensing devices, and 3D printing-based props have become much more feasible for providing improved experiences for users in virtual environments. In particular, research on haptic feedback is being actively conducted to enhance the effect of controlling virtual objects. Studies have begun to use real objects that resemble virtual objects, i.e., passive haptic, instead of using haptic equipment with motor control, as an effective method that allows natural interaction. However, technical difficulties must be resolved to match transformations (e.g., position, orientation, and scale) between virtual and real objects to maximize the user’s immersion. In this paper, we compare and explore the effect of passive haptic parameters on the user’s perception by using different transformation conditions in immersive virtual environments. Our experimental study shows that the participants felt the same within a certain range, which seems to support the “minimum cue” theory in giving sufficient sensory stimulation. Thus, considering the benefits of the model using our approach, haptic interaction in VR content can be developed in a more economical way.