2021
DOI: 10.48550/arxiv.2104.00749
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Anytime Dense Prediction with Confidence Adaptivity

Abstract: Anytime inference requires a model to make a progression of predictions which might be halted at any time. Prior research on anytime visual recognition has mostly focused on image classification. We propose the first unified and end-to-end model approach for anytime pixel-level recognition. A cascade of "exits" is attached to the model to make multiple predictions and direct further computation. We redesign the exits to account for the depth and spatial resolution of the features for each exit. To reduce total… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 48 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?