Abstract:In many machine learning applications, it is important for the user to understand the reasoning behind the recommendation or prediction of the classifiers. The learned models, however, are often too complicated to be understood by a human. Research from the social sciences indicates that humans prefer counterfactual explanations over alternatives. In this paper, we present a general framework for generating counterfactual explanations in the textual domain.Our framework is model-agnostic, representation-agnost… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.