Multiple sclerosis (MS) is a chronic neurodegenerative disorder involving demyelination. The cuprizone model is commonly used to study MS by inducing oligodendrocyte stress and demyelination. The subventricular zone (SVZ) plays a key role in neurogenesis, while the neuronal/glial antigen 2 (NG2) is a marker for immature glial cells, involved in oligodendrocyte differentiation. The apelin receptor (APLNR) is linked to neurogenesis and behavior modulation. This study explores the role of APLNR in NG2-positive cells during de- and remyelination phases in the experimental cuprizone mouse model. Thirty male C57BL/6 mice were divided into control (not treated), demyelination (5 weeks cuprizone administration), and remyelination (5 weeks cuprizone administration + 5 weeks recovery) groups. Histological examinations, immunohistochemistry, and immunofluorescence on serial coronal sections were conducted to evaluate corpus callosum (CC) morphology and APLNR and NG2 expression in the SVZ, in addition to behavioral assessments. The histological analysis showed a significant reduction in the CC’s thickness and area after five weeks of cuprizone exposure, followed by recovery five weeks post-exposure. During the demyelination phase, APLNR-expressing cells peaked while NG2-positive cells decreased. In the remyelination phase, APLNR-expressing cells declined, and NG2-positive cells increased. Confocal microscopy confirmed the co-localization of NG2 and APLNR markers. Statistically significant differences were observed across experimental groups. Correlation analyses highlighted associations between APLNR/NG2 cell counts and CC changes. Behavioral tests revealed impaired motor coordination and memory during demyelination, with gradual recovery during remyelination. Significant changes in the CC structure and the number of APLNR and NG2-positive cells were observed during de- and remyelination, suggesting that NG2-positive cells expressing APLNR may play a key role in remyelination.