We have investigated nano-apertures with different geometries on VSALs using far-field measurements, near-field measurements, and finite difference time domain (FDTD) simulation methods. We were able to quantitatively verify the aperture geometry dependent power throughput in all three methods. From both far-field measurements and FDTD simulation results, we conclude that for the apertures of the same area, a rectangular aperture with the long side perpendicular to the active layer has the largest throughput, while a circular aperture has the second largest, and the rectangular aperture with the long side parallel to the active layer has the least throughput among the three. We have attempted to correlate the relationship between far-field power and near-field power. Employing an apertureless near-field scanning optical microscopy (NSOM), we found that for the two rectangular apertures being studied, the near-field power throughput result was consistent to that of far-field measurement. Using .VSALs as a near-field aperture testbed was also proposed and demonstrated.