Mature gametocytes of Plasmodium (P.) falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated to the inner membrane complex (IMC). Microtubule associated proteins (MAPs) define MT populations and modulate interaction to pellicular components. Several MAPs have been identified in Toxoplasma gondii and homologues can be found in the genome of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium., especially within the Laverania subgenus, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in P. falciparum cause severe morphological defects during gametocytogenesis leading to round, non-falciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in P. berghei, a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in sporozoite invasion of salivary glands leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission.