SUMMARY
Insect communication is primarily via chemicals. In Aphidinae aphids, the structure and ratio of iridoid (monoterpenoid) chemicals are known to be important components of the sex pheromone. However, for enhanced species specificity, it has been suggested that release of sex pheromone might be restricted to a narrow time period within the diel cycle. Here, we determine the structure, ratios and release patterns of iridoid chemicals produced by a serious global pest, the rosy apple aphid, Dysaphis plantaginea. Volatiles were collected from batches of oviparae (sexual females) and chemicals identified by gas chromatography, mass-spectrometry and microscale NMR spectroscopy.(1R,4aS,7S,7aR)-Nepetalactol and(4aS,7S,7aR)-nepetalactone were detected in a 3.7:1 ratio. To investigate timing of release, we constructed a sequential sampling device that allowed volatile chemicals to be captured hourly from 95 same-aged oviparae over 20 consecutive days. Release patterns of the two sex pheromone components show that D. plantaginea oviparae release high levels of the two components during photophase and low levels during scotophase. Release of the two components increased significantly during the first 3 h of photophase and thereafter remained at a high level until the onset of scotophase. The ratio of(1R,4aS,7S,7aR)-nepetalactol to(4aS,7S,7aR)-nepetalactone released did not change significantly between days two to 14 of the adult stadium, but from the 15th day onward there was a significant decrease in the relative amount of(1R,4aS,7S,7aR)-nepetalactol. Pheromone release was greatest on the eighth day of the adult stadium, with up to 8.4 ng of pheromone released per ovipara per hour. This is the first report on the full structural identification and ratios of volatile iridoid components collected from D. plantaginea oviparae and is also the most detailed temporal study on sex pheromone release from any aphid species. The lack of a temporally narrow and distinct period of very high sex pheromone release suggests that alternative mechanisms or factors for species recognition and isolation may be important. Findings are discussed broadly in relation to the biology of the aphid.