Background : The capitulum of Chrysanthemum morifolium cv. ‘Hangju’ has been widely used in China for antioxidant and anti-inflammatory. Flavonoids as one of the bioactive components in C . morifolium have a poor understanding in their biosynthesis and regulation. Nowadays, transcriptome sequencing as an effective method was used in capturing the transcripts information. So, single-molecule real-time (SMRT) sequencing was performed to obtain the full length of genes involved in flavonoid biosynthesis and regulation in C . morifolium .
Results : The high-quality RNA was extracted from the capitulum of C . morifolium at different development stages, and it was constructed into two libraries (0-5 kb and 4.5-10 kb) for sequencing. Finally, 125,532 non-redundant isoforms with mean length of 2,009 bp were captured. Of which, 2,083 transcripts were annotated in the pathway related to the flavonoid biosynthesis and 56 isoforms were annotated as CHS , CHI , F3H , F3’H , FNS Ⅱ , FLS , DFR and ANS genes. Based on the gene expression level at different stages, we predicted the major genes involved in the flavonoid biosynthesis. And we found two candidate MYB factors (CmMYBF1 and CmMYBF2) activating the flavonol biosynthesis by phylogenetic analysis.
Conclusions : Based on the full-length transcriptome data and further quantitative analysis, the major genes involved in flavonoid biosynthesis and regulation in C . morifolium were predicted in our study. The results provide a valuable theoretical basis for introduction and cultivation of C. morifolium cv. ‘Hangju’.