ResumoAplicações de Redes Neurais Artificiais (RNA), também conhecidas como Redes Neurais Adaptativas, usando multicamadas, fluxo de informações direto à frente, algoritmos de treinamento e retro propagação (MFB), foram realizadas para calcular uma importante variável do processo de laminação de tiras no Laminador de Tiras a Quente (LTQ). Esta variável é a tensão de escoamento a quente (TEQ), relacionada ao caso particular da laminação de tiras a quente, de aços C-Mn. Conceitos básicos sobre o passe de laminação são apontados. Fundamentos das redes neurais MFB, sua metodologia, coleta e seleção de dados, arquitetura, treinamento, desempenho e precisão são destacados, objetivando a avaliação dos valores de TEQ para cada cadeira do LTQ. Como uma premissa deste trabalho, as variáveis de entrada são mantidas em um nível simples, sem qualquer cálculo sofisticado ou recursivo, em termos da obtenção de seus valores. Sob estas condições, modelos simplificados foram apresentados para as duas principais variáveis de entrada, respectivamente a temperatura da tira no passe de laminação e o raio achatado dos cilindros de trabalho. Palavras-Chave: Redes neurais; Laminação de tiras a quente; Tensão de escoamento a quente; Força de laminação a quente.