Summary Alzheimer's disease (AD) is the most common cause of dementia and represents one of the highest unmet needs in medicine today. Drug development efforts for AD have been encumbered by largely unsuccessful clinical trials in the last decade. Drug repositioning, a process of discovering a new therapeutic use for existing drugs or drug candidates, is an attractive and timely drug development strategy especially for AD. Compared with traditional de novo drug development, time and cost are reduced as the safety and pharmacokinetic properties of most repositioning candidates have already been determined. A majority of drug repositioning efforts for AD have been based on positive clinical or epidemiological observations or in vivo efficacy found in mouse models of AD. More systematic, multidisciplinary approaches will further facilitate drug repositioning for AD. Some experimental approaches include unbiased phenotypic screening using the library of available drug collections in physiologically relevant model systems (e.g. stem cell-derived neurons or glial cells), computational prediction and selection approaches that leverage the accumulating data resulting from RNA expression profiles, and genome-wide association studies. This review will summarize several notable strategies and representative examples of drug repositioning for AD.