Summary. Apomixis is a genetically controlled reproductiveprocess by which embryos and seeds develop in the ovule without female meiosis and egg cell fertilization. Apomixis produces seed progeny that are exact replicas of the mother plant. The major advantage of apomixis over sexual reproduction is the possibility to select individuals with desirable gene combinations and to propagate them as clones. In contrast to clonal propagation through somatic embryogenesis or in vitro shoot multiplication, apomixis avoids the need for costly processes, such as the production of artificial seeds and tissue culture. It simplifies the processes of commercial hybrid and cultivar production and enables a large-scale seed production economically in both seed-and vegetatively propagated crops. In vegetatively reproduced plants (e.g., potato), the main applications of apomixis are the avoidance of phytosanitary threats and the spanning of unfavorable seasons. Because of its potential for crop improvement and global agricultural production, apomixis is now receiving increasing attention from both scientific and industrial sectors. Harnessing apomixis is a major goal in applied plant genetic engineering. In this regard, efforts are focused on genetic and breeding strategies in various plant species, combined with molecular methods to analyze apomictic and sexual modes of reproduction and to identify key regulatory genes and mechanisms underlying these processes. Also, investigations on the components of apomixis, i.e., apomeiosis, parthenogenesis, and endosperm development without fertilization, genetic screens for apomictic mutants and transgenic approaches to modify sexual reproduction by using various regulatory genes are receiving a major effort. These can open new avenues for the transfer of the apomixis trait to important crop species and will have far-reaching potentials in crop improvement regarding agricultural production and the quality of the products.