Sodium butyrate (NaBu) can enhance the expression of genes from some of the mammalian promoters including cytomegalovirus (CMV) and simian virus 40 (SV40), but it can also inhibit cell growth and induce cellular apoptosis. Thus, the beneficial effect of using a higher concentration of NaBu on a foreign protein expression is compromised by its cytotoxic effect on cell growth. To overcome this cytotoxic effect of NaBu, a survival protein, human Bcl-2, was overexpressed in recombinant Chinese hamster ovary (CHO) cells (SH2-0.32), producing a humanized antibody directed against the S surface antigen of hepatitis B virus. When batch cultures of both control cells transfected with bcl-2-deficient plasmid (SH2-0.32-⌬bcl-2) and cells transfected with bcl-2 expression plasmid (14C6-bcl-2) were performed in the absence of NaBu, both cells showed similar profiles of cell viability and antibody production. Compared with the SH2-0.32-⌬bcl-2 culture, under the condition of NaBu addition at the exponential growth phase, overexpression of the bcl-2 gene considerably suppressed the NaBuinduced apoptosis of 14C6-bcl-2 by inhibiting caspase 3 activity and extending culture longevity by >2 days. As a result, the final antibody concentration of 14C6-bcl-2 culture was twofold higher than that of SH2-0.32-⌬bcl-2 culture in the presence of NaBu and threefold higher than that of SH2-0.32-⌬bcl-2 and 14C6-bcl-2 cultures in the absence of NaBu.