AimsDiagnostic ambiguities regarding the malignant potentiality of oral submucous fibrosis (OSF), an oral precancerous condition having dysplastic and non-dysplastic isoforms are the major failure for early intervention of oral squamous cell carcinoma (OSCC) patients. Our goal is to identify proteomic signatures from biopsies that can be used as precancer diagnostic marker for patient suffering from OSF.MethodsThe high throughput techniques adopting de novo peptide sequencing (1D SDS-PAGE coupled nanoLC MALDI tandem mass spectrometry (MS/MS)-based peptide mass fingerprint), immunohistochemistry (IHC), Western blot (WB) and real-time PCR (RT-PCR) analysis are considered for such biomarker identification and multilevel validations.ResultsAlpha-enolase is identified as an overexpressed protein in biopsies of oral submucous fibrosis with dysplasia (OSFWD) compared with oral submucous fibrosis without dysplasia (OSFWT) and normal oral mucosa (NOM). Total proteome analysis of an overexpressed protein band around 47 kDa of OSFWD identifies 334 peptides corresponding to 61 human proteins. Among them α-enolase is identified as a prime protein with highest number of peptides (44 out of 334 peptides) and sequence coverage (66.4%). Furthermore, RT-PCR, WB and IHC analysis also show mRNA and tissue level upregulation of α-enolase in OSFWD validating α-enolase as precancer marker.ConclusionsThis study for the first time identifies and validates α-enolase as a novel biomarker for early diagnosis of malignant potentiality of OSF. Hence, the identified protein marker, α-enolase can help in early therapeutic intervention of OSF patients leading to the reduction of patient’s pain, treatment cost and enhancement of patient’s quality of life.