Metal hydrides often display dramatic changes in optical properties upon hydrogenation. These shifts make them prime candidates for many tunable optical devices, such as optical hydrogen sensors and switchable mirrors. While some of these metals, such as palladium, have been well studied, many other promising materials have only been characterized over a limited optical range and lack direct in situ measurements of hydrogen loading, limiting their potential applications. Further, there have been no systematic studies that allow for a clear comparison between these metals. In this work, we present such a systematic study of the dynamically tunable optical properties of Pd, Mg, Zr, Ti, and V throughout hydrogenation with a wavelength range of 250 -1690 nm. These measurements were performed in an environmental chamber, which combines mass measurements via a quartz crystal microbalance with ellipsometric measurements in up to 7 bar of hydrogen gas, allowing us to determine the optical properties during hydrogen loading. In addition, we demonstrate a further tunability of the optical properties of titanium and its hydride by altering annealing conditions, and we investigate the optical and gravimetric hysteresis that occurs during hydrogenation cycling of palladium. Finally, we demonstrate several nanoscale optical and plasmonic structures based on these dynamic properties. We show structures that, upon hydrogenation, demonstrate five orders of magnitude change in reflectivity, resonance shifts of >200 nm, and relative transmission switching of >3000%, suggesting a wide range of applications.