As opposed to psychophysical evaluation techniques, laser interferometry measures what shift lenses are designed to provide: axial shift on accommodative effort. While under pilocarpine some movement was recorded, no movement at all was found under near-point stimulation with any of the lenses currently marketed. In contrast, magnetic-driven active-shift lens systems carry the potential of sufficiently topping up apparent accommodation to provide for clinically useful accommodation while using conventional lens designs with proven after-cataract performance. Dual optic implants significantly increase the impact of axial optic shift. The main potential problem, however, is delayed formation of interlenticular regenerates. Lens refilling procedures offer the potential of fully restoring accommodation due to the great impact of increase in surface curvature on refractive lens power. However, various problems remain to be solved before clinical use can be envisaged, above all, again, after-cataract prevention. The concept of passive single-optic shift lenses has failed. Concomitant poor capsular bag performance makes these lenses an unacceptable trade-off. Magnet-assisted systems potentially combine clinically useful accommodation with satisfactory after-cataract performance. Dual optic lenses theoretically offer substantial accommodative potential but may allow for interlenticular after-cataract formation. Lens refilling procedures have the greatest potential for fully restoring natural accommodation, but will again require years of extensive laboratory and animal investigations before they may function in the human eye.