In this work, effects of hydrophilic poly(ethylene glycol) methyl ether (PEGME) 5000 additive on the structure, morphology, and performance of polysulfone (PSF) membrane have been investigated. The membranes are prepared with direct blending of PEGME5000 (0-9 wt %) with two compositions of PSF (12 and 15 wt %) into N-methyl-2-pyrrolidone and further characterized in terms of morphology, structure, fouling, and ultrafiltration performance. The ternary phase diagram is plotted to investigate the thermodynamic stability of the system. Moreover, protein adsorption tests are conducted using bovine serum albumin (BSA) to see the effect of PEGME5000 on surface hydrophilicity. The ultrafiltration experiments are performed using humic acid (HA) solution and oil-in-water (o/w) emulsion. The result showed that, the contact angle decreased from 64 to 46 and from 67.6 to 49 for 12M and 15M membranes, respectively, indicating an improved hydrophilicity. The 12M and 15M membranes with 9 wt % of PEGME5000 have the lowest BSA adsorption due to highest antifouling property. The maximum permeability was obtained 0.72 and 0.51 L/m 2 h kPa for 12M5 and 15M3, respectively, due to maximum porosity which is also supported by the morphological result. In HA permeation, 12M5 and 15M3 achieved a maximum Flux RR around 0.95 and 0.91, respectively, which was remarkably higher compared to 0.61 and 0.62 Flux RR of 12M0 and 15M0. Also, PEGME5000 significantly affected the structure and morphology of the membranes.