S U M M A R YAlthough the Matuyama-Brunhes boundary (MBB) in the Chinese Loess Plateau (CLP) is very important in reliably correlating Quaternary loess with other sediments in the world, particularly with marine and polar ice cores, its exact stratigraphic position remains controversial. Previous investigations usually placed the MBB between paleosol unit S8 and loess unit L8 in various locations. To better understand the spatial differences in the MBB position, a high-resolution paleomagnetic study was conducted in a loess section of the Lantian Basin at the southern margin of the CLP. The results show that the MBB is situated in the middle of the relatively weak paleosol unit S7, consistent with a recent report on the MBB based on a 10 Be study from the Xifeng and Luochuan loess sections of the central CLP. However, the regional anomalously low magnetic susceptibility in paleosols S7 and S8 indicates that it is more reliable to determine the paleoclimate boundaries between loess and paleosol horizons of this segment with median grain size. Then, the MBB in the Yushan section can be correlated with the bottom of paleosol S7, corresponding to the older part of interglacial marine isotope stage 19. This result temporally reconciles the striking discrepancy of the position of the MBB recorded in between loess and other typical sedimentary sequences, and further confirms that the stratigraphic position of the MBB could spatially vary to a certain extent due to regional sedimentary or paleoclimatic conditions in the marginal areas of the CLP. In the Yushan section, the high-frequency variations of paleomagnetic directions during a long period of ∼31 ka before the MBB, however, could not be attributed to a genuine response to the true geomagnetic behaviour. Moreover, the climate offset defined by the magnetic susceptibility and median grain size of the section can be preliminarily attributed to the regional geology and paleoenvironment background. A multiproxy-based stratigraphic division is considered very necessary when paleomagnetic and climatic boundaries are defined exactly in a specific area of the southern CLP.