Morphology, magnetic and magnetocaloric properties of La 0.62 Er 0.05 Ba 0.33 Mn 1−x Fe x O 3 (x = 0.00, 0.05 and 0.15) were experimentally investigated. Solid-state reaction method was used in the preparation of the samples. The microstructure of the samples was determined by scanning electron microscopy (SEM). From the XRD study, it has been found that all samples are single-phased and crystallized in the rhombohedral structure with the R3-c space group. For x = 0.05 and 0.15, a steep drop of zero field-cooled (ZFC) magnetization at low temperature signifies the formation of cluster-or spinglass state. This is caused by the competition between the ferromagnetic and antiferromagnetic interaction. A sensitive response to substituting Fe for Mn is observed in the magnetic and magnetocaloric properties. We found that Fe doping is powerful enough to reduce Curie temperature T C and it brings about cluster glass behaviours. The magnetocaloric effect is calculated from the measurement of initial isothermal magnetization versus magnetic field at various temperatures. The maximum entropy change S max M reaches the highest values of 3.31, 3.12, and 2.57 J/kg K in magnetic field. However, the relative cooling power decreases with Fe content from x = 227.44 to 188.68 J/kg for x = 0.00 to x = 0.15 compositions, respectively.