The aim of the study was to estimate the optimal parameters of apple drying and the rehydration temperature of the obtained dried apple. Conducting both processes under such conditions is aimed at restoring the rehydrated apple to the raw material properties. The obtained drying parameters allow the drying process to be carried out in a short drying time (DT) and at low energy consumption (EC). The effect of air velocity (vd), drying temperature (Td), characteristic dimension (CD), and rehydration temperature (Tr) on rehydrated apple quality was studied. Quality parameters of the rehydrated apple as: color change (CC), mass gain ratio (MG), solid loss ratio (SL), volume gain ratio (VG) together with DT and EC were taken into consideration. The artificial neural network was used for modeling of rehydrated apple quality parameters, DT, and EC. A multi-objective genetic algorithm was developed in order to optimize parameters of the drying and rehydration processes. The simultaneous minimization of CC, SL, DT, EC, and the maximization of MG and VG were considered with the following drying and rehydration processes parameters: Td: 50–70 °C, vd: 0.01–2 m/s, Tr: 20–70 °C. The best solution has been found at drying temperature 56.1 °C, air velocity 1.3 m/s, characteristic dimension 2.0 mm, and rehydration temperature 59.2 °C. This apple drying and rehydration resulted in MG = 3.51, SL = 0.57, VG = 4.77, CC = 11.2, DT = 5.4 h, EC = 159.8 GJ/kg. The parameters of apple drying and rehydration processes can be recommended for the industry application.