2021
DOI: 10.48550/arxiv.2111.11998
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Appliance Level Short-term Load Forecasting via Recurrent Neural Network

Abstract: Accurate load forecasting is critical for electricity market operations and other real-time decision-making tasks in power systems. This paper considers the short-term load forecasting (STLF) problem for residential customers within a community. Existing STLF work mainly focuses on forecasting the aggregated load for either a feeder system or a single customer, but few efforts have been made on forecasting the load at individual appliance level. In this work, we present an STLF algorithm for efficiently predic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?