The purpose of this research was the characterization and improvement of the quality of water used for human consumption of unregulated/regulated water sources located in the Cameron/Tuba City abandoned uranium mining area (NE Arizona, western edge of the Navajo Nation). Samples were collected at six water sources which included regulated sources: Wind Mill (Tank 3T-538), Badger Springs and Paddock Well as well as unregulated sources: Willy Spring, Water Wall and Water Hole. Samples taken from Wind Mill, Water Wall and Water Hole were characterized with high turbidity and color as well as high level of manganese, iron and nickel and elevated value of molybdenum. High level of iron was also found in Badger Spring, Willy Spring, and Paddock Well. These three water sources were also characterized with elevated values of fluoride and vanadium. Significant amounts of zinc were found in Water Wall and Water Hole samples. Water Wall sample was also characterized with high level of Cr(VI). Compared to primary or secondary Navajo Nation Environmental Protection Agency (NNEPA) water quality standard the highest enrichment was found for turbidity (50.000 times), color (up to 1.796 times) and manganese (71 times), Cr(VI) (17.5 times), iron (7.4 times) and arsenic (5.2 times). Activities of (226)Ra and (238)U in water samples were still in agreement with the maximum contaminant levels. In order to comply with NNEPA water quality standard water samples were subjected to electrochemical treatment. This method was selected due to its high removal efficiency for heavy metals and uranium, lower settlement time, production of smaller volume of waste mud and higher stability of waste mud compared to physico-chemical treatment. Following the treatment, concentrations of heavy metals and activities of radionuclides in all samples were significantly lower compared to NNEPA or WHO regulated values. The maximum removal efficiencies for color, turbidity, arsenic, manganese, molybdenum and nickel were 100.0%. Maximum removal percentage of Cu, F(-), V, Zn, (137)Cs, (226)Ra, (232)Th, (238)U were as follows: 98.0%; 82.7%; 99.9%; 95.6%; 75.0%; 76.9%; 80.0% and 99.2%. From the results presented it could be concluded that electrochemical treatment is a suitable approach for the purification of drinking water with complex mixture of contaminants, especially those with high turbidity and color.