Effects of nighttime (2000 to 0700 hr) O3 on the pod mass of sensitive (S156) and resistant (R123) snap bean (Phaseolus vulgaris) genotypes were assessed using continuous stirred tank reactors located within a greenhouse. Two concentration-response relationship trials were designed to evaluate yield response to nighttime O3 exposure (10 to 265 ppb) in combination with daytime exposure at background levels (44 and 62 ppb). Three replicated trials tested the impact of nighttime O3 treatment at means of 145, 144, and 145 ppb on yields. In addition, stomatal conductance (gS) measurements documented diurnal variations and assessed the effects of genotype and leaf age. During the concentration-response experiments, pod mass had a significant linear relationship with the nighttime O3 concentration across genotypes. Yield losses of 15% and 50% occurred at nighttime exposure levels of ≈45 and 145 ppb, respectively, for S156, whereas R123 yields decreased by 15% at ≈150 ppb. At low nighttime O3 levels of ≈100 ppb, R123 yields initially increased up to 116% of the treatment that received no added nighttime O3, suggesting a potential hormesis effect for R123, but not for S156. Results from replicated trials revealed significant yield losses in both genotypes following combined day and night exposure, whereas night-only exposure caused significant decreases only for S156. The gS rates ranged from less than 100 mmol·m−2·s−1 in the evening to midday levels more than 1000 mmol·m−2·s−1. At sunrise and sunset, S156 had significantly higher gS rates than R123, suggesting a greater potential O3 flux into leaves. Across genotypes, younger rapidly growing leaves had higher gS rates than mature fully expanded leaves when evaluated at four different times during the day. Although these were long-term trials, gS measurements and observations of foliar injury development suggest that acute injury, occurring at approximately the time of sunrise, also may have contributed to yield losses. To our knowledge, these are the first results to confirm that the relative O3 sensitivity of the S156/R123 genotypes is valid for nighttime exposure.