At the Atsumi Wind Farm in Aichi Prefecture, Japan, damage to wind turbines occurred frequently due to terrain-induced turbulence. In the present study, numerical analyses of terraininduced turbulence were conducted by reproducing the topography in the vicinity of the wind turbine sites in high resolution and using RIAM-COMPACT natural terrain version, which is based on large eddy simulation (LES). The results of the diagnoses indicated that, in the case of south-easterly wind, terrain-induced turbulence is generated at a small terrain feature located upstream of Wind Turbine (WT) #2, which serves as the origin of the turbulence. At the Atsumi Wind Farm, a combination of the series of wind diagnoses and on-site operation experience led to a decision to adopt an "automatic shutdown program" for WTs #1 and #2. Here, "automatic shutdown program" refers to the automatic suspension of wind turbine operation upon the wind speed and direction meeting the conditions associated with significant effects of terrain-induced turbulence at a wind turbine site. The adoption of the "automatic shutdown program" has successfully resulted in a large reduction in the number of occurrences of wind turbine damage, thus, creating major positive economic effects. 1) a reduction in the repair costs by 9.322 million yen per year per wind turbine, 2) an increase in the availability factor by 8.05%, and 3) an increase in the capacity factor by 1.7%.