To investigate droplet formation in a microchannel with different walls, simulations were conducted based on a pseudopotential model using the exact difference method force scheme. The variable surface tension was obtained using Laplace’s law, and the static contact angle was estimated using a first-order linear equation of the corresponding control parameter of the model. The droplet motion in microchannels was simulated using our model, and the effects of surface wettability and the Bond number on the droplet motion were investigated. The droplet motion for the intermediate microchannel wall took a significantly shorter time than that for the hydrophilic wall, and the wet length also depended on the contact angle. As the Bond number increased, the wet length of the droplet decreased on the hydrophilic surface. The droplet formation in a T-junction device was also simulated using the proposed model, and the effects of the capillary number and viscosity ratio on droplet formation were discussed in detail, and some empirical correlations between the capillary number and dimensionless droplet length are presented according to different viscosity ratios. The three flow patterns of droplet formation were categorized by the different capillary numbers as the dripping–squeezing, jetting–shearing, and threading regimes. In the dripping–squeezing regime, the droplet volume was nearly independent of the viscosity ratio, but the viscous effect was more prone to occur in the jetting–shearing regime. In the jetting–shearing regime, as the capillary number increased, the effect of the viscosity ratio on droplet formation became more significant.