Edible packaging plays an important role in protecting food products from physical, mechanical, chemical, and microbiological damages by creating a barrier against oxidation, water, and controlling enzymatic activation. The employment of active agents such as plant extracts, essential oils, cross-linkers, and nanomaterials in edible packaging promises to improve mechanical, physical, barrier, and other properties of edible materials as well as food products. In the current review, we have compiled information on the recent advances and trends in developing composite (binary and ternary) edible packaging for food application. Several types of active agents such as essential oils, plant extracts, cross-linking agents, and nanomaterials as well as their functions in edible packaging (active composite) have been discussed. The present study provides the collective information about the high- (high-pressure homogenizer, ultrasonication, and microfludizer) and low-energy (phase inversion temperature and composition and spontaneous emulsification) methods for developing nanoformulations. In addition, concepts of comprehensive studies required for developing edible coatings and films for food packaging applications, as well as overcoming challenges like consumer acceptance, regulatory requirements, and non-toxic scaling up to the commercial applications, have also been discussed.