Wear resistance, which is one of the main technological quality features of machine parts and tools, is determined by the properties of their surface layer. The demand for high-quality products forces manufacturers to use modern structural and tooling materials as well as efficient and cost-effective methods of their treatment. The paper presents the results of research on selected properties of tools made of tool steels and sintered carbides, as well as parts made of aluminum alloy subjected to selected surface treatment processes, such as mechanical (grinding, turning, milling, burnishing) and thermo-chemical (nitriding, sulfonitriding) processes, and physical vapor deposition (PVD) of coatings. The presented results, including analyses of the surface geometric structure, microstructure, and microhardness, as well as tribological and machining properties of selected materials, indicate the possibility of improving the functional quality of tools and machine parts.