Extreme flood events are caused by long-lasting and/or intensive precipitation. The detailed knowledge of the distribution, intensity, and spatiotemporal variability of precipitation is, therefore, a prerequisite for hydrological flood modeling and flood risk management. For hydrological modeling, temporal and spatial high-resolution precipitation data can be provided by meteorological models. This study deals with the question of how small changes in the synoptic situation affect the characteristics of extreme forecasts. For that purpose, two historic extreme precipitation events were hindcasted using the Consortium for Small Scale Modeling (COSMO) model of the German Weather Service (DWD) with different grid resolutions (28, 7, and 2.8 km), where the domains with finer resolutions were nested into the ones with coarser resolution. The results show that the model is capable of simulating such extreme precipitation events in a satisfactory way. To assess the impact of small changes in the synoptic situations on extreme precipitation events, the large-scale atmospheric fields were shifted to north, south, east, and west with respect to the orography by about 28 and 56 km, respectively, in one series of runs while in another series, the relative humidity and temperature were increased to modify the amount of precipitable water. Both series were performed for the Elbe flood events in August 2002 and January 2003, corresponding to two very different synoptic situations. The results show that the modeled precipitation can be quite sensitive to small changes of the synoptic situation with changes in the order of 20% for the maximum daily precipitation and that the types of synoptic situations play an important role. While van Bebber weather conditions, of Mediterranean origin, were quite sensitive to modifications, more homogeneous weather patterns were less sensitive.