2016
DOI: 10.1016/j.rser.2015.09.062
|View full text |Cite
|
Sign up to set email alerts
|

Application of adaptive neuro-fuzzy methodology for estimating building energy consumption

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
18
0
5

Year Published

2016
2016
2021
2021

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 57 publications
(23 citation statements)
references
References 33 publications
0
18
0
5
Order By: Relevance
“…For this reason, an ANN is one of the most appropriate machine-learning methods for the current dataset. According to Table 1, some papers specifically applied ANN to the dataset (Ahmed et al [20]; Nwulu [28]), while others applied the ensemble approach by incorporating ANNs (Chou and Bui [18]; Sonmez et al [21]; Naji et al [25]; Nilashi et al [27]). To the best of the authors' knowledge, Sekha et al [4] is the only paper that applied DNNs to forecast HL and CL.…”
Section: Literature Reviewmentioning
confidence: 99%
“…For this reason, an ANN is one of the most appropriate machine-learning methods for the current dataset. According to Table 1, some papers specifically applied ANN to the dataset (Ahmed et al [20]; Nwulu [28]), while others applied the ensemble approach by incorporating ANNs (Chou and Bui [18]; Sonmez et al [21]; Naji et al [25]; Nilashi et al [27]). To the best of the authors' knowledge, Sekha et al [4] is the only paper that applied DNNs to forecast HL and CL.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Nikolić et al [34] also used the ANFIS technique for enhancing the performance of the wind turbines. Naji et al [35] later designed and adapted the ANFIS technique to estimate the energy consumption of buildings based on some parameters, including line insulation, K-value, and material thickness. The results of this paper showed that the ANFIS results are more accurate than the results of the artificial neural network (ANN) and genetic programming (GP) techniques.…”
Section: Sustainability and Fuzzy Neural Networkmentioning
confidence: 99%
“…Эти параметры в процессе моделирования генерируются автоматически и обладают при этом всеми необходимыми статистическими характеристиками. Отметим еще, что модели, использующие вероятностно-статистический подход, особенно полезны для расчета годового энергопотребления здания при оценке его класса энергосбережения, что имеет существенное значение в настоящее время в условиях исчерпания запасов ископаемого органического топлива и повышенного внимания к энергоресурсосбережению, наблюдающегося сейчас в большинстве европейских и других стран [11][12][13][14][15][16][17][18][19][20].…”
Section: обзор литературыunclassified