There is a growing demand for new strategies to tailor the texture of fat-free fermented concentrated milk products, also referred to as milk protein-based (MPb) microgel dispersions. Methods should be easy to incorporate into the production scheme, offer labelling without added components and be cost-efficient. Thermal treatments are traditionally used upstream (milk heating) and downstream (pre-concentration heating) in the production of these dispersions, though there is little knowledge as to the effects that combinations of different thermal input levels have on final texture. Therefore, this study investigated combinations of thermal input at different intensities and steps in the production scheme at the pilot scale and the relationships with texture. We demonstrated that increasing the intensity of upstream milk heat treatment, in combination with downstream pre-concentration heating, increases gel firmness and apparent viscosity. Downstream pre-concentration heating produces final fat-free fermented concentrated MPb microgel particles that are resistant to post-heating aggregation. On the other hand, omission of downstream pre-concentration heating results in smaller particles that are sensitive to post-heating aggregation. Furthermore, gel firmness and apparent viscosity increase with post-heating. Consequently, combining different levels of thermal inputs upstream, downstream (pre-concentration) and post-production, can produce fat-free fermented concentrated MPb microgel dispersions with a range of different textures.