Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background As global aging intensifies, the prevalence of ocular fundus diseases continues to rise. In China, the tense doctor-patient ratio poses numerous challenges for the early diagnosis and treatment of ocular fundus diseases. To reduce the high risk of missed or misdiagnosed cases, avoid irreversible visual impairment for patients, and ensure good visual prognosis for patients with ocular fundus diseases, it is particularly important to enhance the growth and diagnostic capabilities of junior doctors. This study aims to leverage the value of electronic medical record data to developing a diagnostic intelligent decision support platform. This platform aims to assist junior doctors in diagnosing ocular fundus diseases quickly and accurately, expedite their professional growth, and prevent delays in patient treatment. An empirical evaluation will assess the platform’s effectiveness in enhancing doctors’ diagnostic efficiency and accuracy. Methods In this study, eight Chinese Named Entity Recognition (NER) models were compared, and the SoftLexicon-Glove-Word2vec model, achieving a high F1 score of 93.02%, was selected as the optimal recognition tool. This model was then used to extract key information from electronic medical records (EMRs) and generate feature variables based on diagnostic rule templates. Subsequently, an XGBoost algorithm was employed to construct an intelligent decision support platform for diagnosing ocular fundus diseases. The effectiveness of the platform in improving diagnostic efficiency and accuracy was evaluated through a controlled experiment comparing experienced and junior doctors. Results The use of the diagnostic intelligent decision support platform resulted in significant improvements in both diagnostic efficiency and accuracy for both experienced and junior doctors (P < 0.05). Notably, the gap in diagnostic speed and precision between junior doctors and experienced doctors narrowed considerably when the platform was used. Although the platform also provided some benefits to experienced doctors, the improvement was less pronounced compared to junior doctors. Conclusion The diagnostic intelligent decision support platform established in this study, based on the XGBoost algorithm and NER, effectively enhances the diagnostic efficiency and accuracy of junior doctors in ocular fundus diseases. This has significant implications for optimizing clinical diagnosis and treatment.
Background As global aging intensifies, the prevalence of ocular fundus diseases continues to rise. In China, the tense doctor-patient ratio poses numerous challenges for the early diagnosis and treatment of ocular fundus diseases. To reduce the high risk of missed or misdiagnosed cases, avoid irreversible visual impairment for patients, and ensure good visual prognosis for patients with ocular fundus diseases, it is particularly important to enhance the growth and diagnostic capabilities of junior doctors. This study aims to leverage the value of electronic medical record data to developing a diagnostic intelligent decision support platform. This platform aims to assist junior doctors in diagnosing ocular fundus diseases quickly and accurately, expedite their professional growth, and prevent delays in patient treatment. An empirical evaluation will assess the platform’s effectiveness in enhancing doctors’ diagnostic efficiency and accuracy. Methods In this study, eight Chinese Named Entity Recognition (NER) models were compared, and the SoftLexicon-Glove-Word2vec model, achieving a high F1 score of 93.02%, was selected as the optimal recognition tool. This model was then used to extract key information from electronic medical records (EMRs) and generate feature variables based on diagnostic rule templates. Subsequently, an XGBoost algorithm was employed to construct an intelligent decision support platform for diagnosing ocular fundus diseases. The effectiveness of the platform in improving diagnostic efficiency and accuracy was evaluated through a controlled experiment comparing experienced and junior doctors. Results The use of the diagnostic intelligent decision support platform resulted in significant improvements in both diagnostic efficiency and accuracy for both experienced and junior doctors (P < 0.05). Notably, the gap in diagnostic speed and precision between junior doctors and experienced doctors narrowed considerably when the platform was used. Although the platform also provided some benefits to experienced doctors, the improvement was less pronounced compared to junior doctors. Conclusion The diagnostic intelligent decision support platform established in this study, based on the XGBoost algorithm and NER, effectively enhances the diagnostic efficiency and accuracy of junior doctors in ocular fundus diseases. This has significant implications for optimizing clinical diagnosis and treatment.
Background Falls in multiple sclerosis can result in numerous problems, including injuries and functional loss. Therefore, determining the factors contributing to falls in people with Multiple Sclerosis (PwMS) is crucial. This study aims to investigate the contributing factors to falls in multiple sclerosis using a machine learning approach. Methods This cross-sectional study was conducted with 253 PwMS admitted to the outpatient clinic of a university hospital between February and August 2023. A sociodemographic data collection form, Fall Efficacy Scale (FES-I), Berg Balance Scale (BBS), Fatigue Severity Scale (FSS), Expanded Disability Status Scale (EDSS), Multiple Sclerosis Impact Scale (MSIS-29), and Timed 25 Foot Walk Test (T25-FW) were used for data collection. Gradient-boosting algorithms were employed to predict the important variables for falls in PwMS. The XGBoost algorithm emerged as the best performed model in this study. Results Most of the participants (70.0%) were female, with a mean age of 40.44 ± 10.88 years. Among the participants, 40.7% reported a fall history in the last year. The area under the curve value of the model was 0.713. Risk factors of falls in PwMS included MSIS-29 (0.424), EDSS (0.406), marital status (0.297), education level (0.240), disease duration (0.185), age (0.130), family type (0.119), smoking (0.031), income level (0.031), and regular exercise habit (0.026). Conclusions In this study, smoking and regular exercise were the modifiable factors contributing to falls in PwMS. We recommend that clinicians facilitate the modification of these factors in PwMS. Age and disease duration were non-modifiable factors. These should be considered as risk increasing factors and used to identify PwMS at risk. Interventions aimed at reducing MSIS-29 and EDSS scores will help to prevent falls in PwMS. Education of individuals to increase knowledge and awareness is recommended. Financial support policies for those with low income will help to reduce the risk of falls. Supplementary Information The online version contains supplementary material available at 10.1186/s12911-024-02621-0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.