The precise control of a greenhouse environment is vital in production. Currently, environmental control in traditional greenhouse production relies on experience, making it challenging to accurately control it, leading to environmental stress, resource waste, and pollution. Hence, this paper proposes a decision-making greenhouse environment control strategy that employs an existing monitoring system and intelligent algorithms to enhance greenhouse productivity and reduce costs. Specifically, a model library is created based on machine learning algorithms, and an intelligent optimization algorithm is designed based on the Non-Dominated Sorting Genetic Algorithm III (NSGA-3) and an expert experience knowledge base. Then, optimal environmental decision-making solutions under different greenhouse environments are obtained by adjusting the greenhouse environmental parameters. Our method’s effectiveness is verified through a simulated fertilization plan that was simulated for a real greenhouse tomato environment. The proposed optimization solution can reduce labor and time costs, enable accurate decision-making in the greenhouse environment, and enhance agricultural production efficiency.