2018 7th International Conference on Industrial Technology and Management (ICITM) 2018
DOI: 10.1109/icitm.2018.8333970
|View full text |Cite
|
Sign up to set email alerts
|

Application of association rules in woven wire mesh defects analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
4
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 6 publications
0
4
0
2
Order By: Relevance
“…This algorithm works by first compressing the database representing frequently occurring items into the FP tree, storing all critical information, and dividing the compressed database into a set of conditional databases (Wu et al, 2008). FP-Growth has been used in several cases to identify strong relationships between different defects using an extensive manufacturing database (Wongwan & Laosiritaworn, 2018). 5) At the evaluation stage, the evaluation of the model was carried out based on the level of accuracy obtained and further analysis of the main causes using Ishikawa and FMEA table.…”
Section: Methodsmentioning
confidence: 99%
“…This algorithm works by first compressing the database representing frequently occurring items into the FP tree, storing all critical information, and dividing the compressed database into a set of conditional databases (Wu et al, 2008). FP-Growth has been used in several cases to identify strong relationships between different defects using an extensive manufacturing database (Wongwan & Laosiritaworn, 2018). 5) At the evaluation stage, the evaluation of the model was carried out based on the level of accuracy obtained and further analysis of the main causes using Ishikawa and FMEA table.…”
Section: Methodsmentioning
confidence: 99%
“…A common approach to analyze monitoring data coming from different production processes is to apply association rule mining, a data mining technique which looks for patterns in big data [2][3][4][5][6][7]. Association rules aid in identifying operation modes leading to higher rates of flawed items [3,4], finding correlations between various types of defects [5], and predicting the output of the finished product [6].…”
Section: Introductionmentioning
confidence: 99%
“…A common approach to analyze monitoring data coming from different production processes is to apply association rule mining, a data mining technique which looks for patterns in big data [2][3][4][5][6][7]. Association rules aid in identifying operation modes leading to higher rates of flawed items [3,4], finding correlations between various types of defects [5], and predicting the output of the finished product [6]. Applying association rule mining in aluminum production makes it possible to reveal patterns across the values of the controlled parameters which are indicative of process disruptions and predict their occurrence in the future.…”
Section: Introductionmentioning
confidence: 99%
“…Для анализа данных мониторинга различных производственных процессов широко применяется технология ассоциативных правил (Association rule mining) -метод интеллектуального анализа данных направленный на поиск паттернов в больших объемах данных [2][3][4][5][6][7]. С помощью ассоциативных правил идентифицируют режимы работы, ведущие к повышенному проценту бракованных изделий [3,4], устанавливают взаимосвязи между типами дефектов [5], прогнозируют объемы выхода готового продукта [6].…”
unclassified
“…Для анализа данных мониторинга различных производственных процессов широко применяется технология ассоциативных правил (Association rule mining) -метод интеллектуального анализа данных направленный на поиск паттернов в больших объемах данных [2][3][4][5][6][7]. С помощью ассоциативных правил идентифицируют режимы работы, ведущие к повышенному проценту бракованных изделий [3,4], устанавливают взаимосвязи между типами дефектов [5], прогнозируют объемы выхода готового продукта [6]. Применение ассоциативных правил для анализа данных производства алюминия позволяет установить характерные сочетания значений контролируемых параметров, при которых возникают технологические нарушения и прогнозировать их возникновение в дальнейшем.…”
unclassified