This paper presents a compendious review for the evaluation and description of the mathematical modelling of the affected components in wind turbines which cause the scattering of communication signals. The impact of an adjacent wind farm operation on telecommunication signals is that it induces electromagnetic interference (EMI) in radar, television and radio signals, resulting from the complex rotating blade’s geometry of the wind turbines. Thus, altering the quality of the reflected signal, especially the capability of the radar detection. In all the modelling studies, the radar cross section (RCS) model of a wind turbine’s blade is found to be the most complex, due to its huge computational burden. However, clutter filtering is another interesting technique, which employs the Doppler signal processing to obviate the huge computational task in RCS. In this case, the rotating blades of the wind turbine produce Doppler echoes, which in turn are used to estimate the model of the blade by modelling the echo of the scattering points. Therefore, this review succinctly compiles the basic steps of theoretical analysis and simulations of the impact of wind turbines on communication signals, and the remedies to minimize the impact.