Purpose
To determine whether 24-h IOP monitoring can be a predictor for glaucoma progression and to analyze the inter-eye relationship of IOP, perfusion, and progression parameters.
Methods
We extracted data from manually drawn IOP curves with HIOP-Reader, a software suite we developed. The relationship between measured IOPs and mean ocular perfusion pressures (MOPP) to retinal nerve fiber layer (RNFL) thickness was analyzed. We determined the ROC curves for peak IOP (Tmax), average IOP(Tavg), IOP variation (IOPvar), and historical IOP cut-off levels to detect glaucoma progression (rate of RNFL loss). Bivariate analysis was also conducted to check for various inter-eye relationships.
Results
Two hundred seventeen eyes were included. The average IOP was 14.8 ± 3.5 mmHg, with a 24-h variation of 5.2 ± 2.9 mmHg. A total of 52% of eyes with RNFL progression data showed disease progression. There was no significant difference in Tmax, Tavg, and IOPvar between progressors and non-progressors (all p > 0.05). Except for Tavg and the temporal RNFL, there was no correlation between disease progression in any quadrant and Tmax, Tavg, and IOPvar. Twenty-four-hour and outpatient IOP variables had poor sensitivities and specificities in detecting disease progression. The correlation of inter-eye parameters was moderate; correlation with disease progression was weak.
Conclusion
In line with our previous study, IOP data obtained during a single visit (outpatient or inpatient monitoring) make for a poor diagnostic tool, no matter the method deployed. Glaucoma progression and perfusion pressure in left and right eyes correlated weakly to moderately with each other.