For geomagnetic navigation technology, taking inspiration from nature and leveraging the principle of animals’ utilization of the geomagnetic field for long-distance navigation, and employing biomimetic technology to develop higher-precision geomagnetic sensors and more advanced navigation strategies, has emerged as a new trend. Based on the two widely acknowledged biological magnetic induction mechanisms, we have designed a bioinspired weak magnetic vector (BWMV) sensor and integrated it with neural networks to achieve geomagnetic matching navigation. In this paper, we assess the performance of the BWMV sensor through finite element model simulation. The result validates its high measurement accuracy and outstanding adaptability to installation errors with the assistance of specially trained neural networks. Furthermore, we have enhanced the bioinspired geomagnetic navigation algorithm and proposed a more advanced search strategy to adapt to navigation under the condition of no prior geomagnetic map. A simulated geomagnetic navigation platform was constructed based on the finite element model to simulate the navigation of the BWMV sensor in geomagnetic environments. The simulated navigation experiment verified that the proposed search strategy applied to the BWMV sensor can achieve high-precision navigation. This study proposes a novel approach for the research of bioinspired geomagnetic navigation technology, which holds great development prospects.