In recent years, the demand for photovoltaic (PV) energy has increased parallel to scientific research on PV cells, including electrical modeling, characterization, and extraction of unknown parameters. Moreover, our main contribution in this paper focuses on experimental investigation of the effect of solar radiation and temperature on the performance of a small photovoltaic plant years after its installation in the Ouargla region. As in many parts of the world, this studied area has experienced rising temperatures due to climate change, affecting system outputs. Therefore, in the first phase, we offer to characterize PV modules in various conditions and analyze the electrical parameters’ performance. The results indicate solar radiation and temperature influence PV modules’ electrical parameters. Moreover, the temperature influences the open-circuit voltage, while solar radiation positively impacts the short-circuit current. On the other side, we determine the optimal parameters of these modules and develop an accurate PV model using the bald eagle search algorithm (BES), gradian-based optimizer algorithm (GBO), and whale optimization Algorithm (WOA) based on a single diode model. The achievements show that the BES and GBO algorithms give good results for the optimum estimation of the PV model compared to WOA, where the best fitness was recorded at 0.015608 with the lowest deviation of 0.012565 and 0.039588, respectively. However, the BES has generated the minimum error values and with minimum iteration number, which indicates that this technique is more stable and robust for PV module parameter extraction.