Amphiphilic polymer coatings were prepared by first generating surface-anchored polymer layers of poly(2-hydroxyethyl methacrylate) (PHEMA) on top of flat solid substrates followed by postpolymerization reaction on the hydroxyl terminus of HEMA’s pendent group using three classes of fluorinating agents, including organosilanes, acylchlorides, and trifluoroacetic anhydride (TFAA). The distribution of the fluorinated groups inside the polymer brushes was assessed by means of a suite of analytical probes, including contact angle, ellipsometry, infrared spectroscopy, atomic force microscopy, and near-edge x-ray absorption fine structure spectroscopy. While organosilane modifiers were found to reside primarily close to the tip of the brush, acylchlorides penetrated deep inside PHEMA thus forming random copolymers P(HEMA-co-fHEMA). The reaction of TFAA with the PHEMA brush led to the formation of amphiphilic diblocks, PHEMA-b-P(HEMA-co-fHEMA), whose bottom block comprised unmodified PHEMA and the top block was made of P(HEMA-co-fHEMA) rich in the fluorinated segments. This distribution of the fluorinated groups endowed PHEMA-b-P(HEMA-co-fHEMA) with responsive properties; while in hydrophobic environment P(HEMA-co-fHEMA) segregated to the surface, when in contact with a hydrophilic medium, PHEMA partitioned at the brush surface. The surface activity of the amphiphilic coatings was tested by studying the adsorption of fibrinogen (FIB). While some FIB adsorption occurred on most coatings, the ones made by TFAA modification of PHEMA remained relatively free of FIB.