The time-resolved chemiluminescence (CL) method has been applied to study the TiO(2) photocatalytic reaction on a micros-ms timescale. The experimental set-up for time-resolved CL was improved for confirmation of the unique luminol CL induced by the photocatalytic reaction. The third harmonic light (355 nm) from an Nd:YAG laser was used for the light source of the TiO(2) photocatalytic reaction. Luminol CL induced by this reaction was detected by a photomultiplier tube (PMT) and a preamplifier was used for amplifying the CL signal. Experimental conditions affecting the photocatalytically induced CL were discussed in detail. The involvement of active oxygen species such as .OH, O(2) (.-) and H(2)O(2) in the CL was examined by adding their scavengers. It is concluded that .OH was greatly involved in the CL on a micros-ms timescale, especially in time periods <100 micros after illumination of the pulse laser. On the other hand, CL generated by O(2) (.-) began to increase after 100 micros and became dominant after 2.5 ms. A small part of the CL might be generated by H(2)O(2) on the whole micros-ms timescale. A CL reaction mechanism related with .OH and dissolved oxygen was proposed to explain the photocatalytically induced luminol CL on a micros-ms timescale, especially in periods <100 micros.