New configurations of 2-D phased arrays are proposed in this paper for reducing the number of phase shifters. This design methodology is based on the use of a novel coherently radiating periodic structures (CORPSs) block for 2-D phased arrays. Two new antenna systems for 2-D phased arrays are studied and analyzed utilizing the CORPSs blocks of four inputs and nine outputs. These CORPSs feeding blocks are applied in a smart way to feed the planar antenna arrays by generating the required phase plane and reducing the number of control ports. Interesting results are provided based on the experimental measurements and full-wave simulations. These results illustrate a great reduction of the active devices (phase shifters), providing a good design compromise in terms of the scanning range and side lobe level performance. Furthermore, the provided results illustrate a maximum reduction capability in the number of phase shifters of 81%, considering a scanning range of ±30° in azimuth and ±30° in elevation. A raised cosine distribution is applied to reach side lobe levels of −19 dB for ±18° and −17 dB for ±30° in elevation. These benefits could be of interest to designers of phased antenna systems.