In order to meet the stringent emission standards significant efforts have been imparted to the research and development of cleaner IC engines. Diesel combustion and the formation of pollutants are directly influenced by spatial and temporal distribution of the fuel injected. The development and validation of computational fluid dynamics (CFD) models for diesel engine combustion and emissions is described. The complexity of diesel combustion requires simulation with many complex interacting sub models in order to have a success in improving the performance and to reduce the emissions. In the present work an attempt has been made to develop a multidimensional axe-symmetric model for CI engine combustion and emissions. Later simulations have been carried out using split injection for single, double and three pulses (split injection) for which commercial validation tool FLUENT was used for simulation. The tool solves basic governing equations of fluid flow that is continuity, momentum, species transport and energy equation. Using finite volume method turbulence was modeled by using RNG K-ɛ model. Injection was modeled using La Grangian approach and reaction was modeled using non premixed combustion which considers the effects of turbulence and detailed chemical mechanism into account to model the reaction rates. The specific heats were approximated using piecewise polynomials. Subsequently the simulated results have been validated with the existing experimental values. The peak pressure obtained by simulation for single and double is 10% higher than to that of experimental value. Whereas for triple injections 5% higher than to that of experimental value. For quadruple injection the pressure has been decreased by 10% when compared to triple injection.NOX have been decreased in simulation for single, double and triple injections by 15%, 28% and 20%.For quadruple injection NOX were reduced in quadruple injection by 20% to that of triple injection. The simulated value of soot for single, double and triple injections are 12%, 22% and 12% lesser than the experimental values. For quadruple injection the soot levels were almost negligible. The simulated heat release rates for single, double and triple were reduced by 12%, 18% and 11%. For quadruple injection heat release is reduced same as to that of triple injection.