Multi-break vacuum circuit breakers (VCBs) are the most potential approach for applying VCBs to high voltage power system. However, it has higher thermal stability requirements than normal single break VCBs due to its complex structure and high rated current. In this paper, a novel 363 kV/5000 A/63 kA SF 6 gas insulate (GI) VCB with series and parallel structure is proposed. To analyze its temperature rise, a 3D coupled electromagnetic-thermal-fluid model is established based on actual size and calculated by finite element method under rated condition, which enables prediction of the temperature distribution of the contacts of VCB and bus bar. In the numerical model, the vacuum chamber is modelled as solid material with temperature dependent effective thermal conductivity while skin effect, nonlinear property of conductor resistivity and turbulence model are taken into consideration. The simulation results show that the hot spot is the contacts of VCB with a temperature of 102.2 K, while the temperature of busbars reach at 92.3 K. In addition, the influences of contact resistance, short circuit current on the temperature rise are discussed. Finally, the simulation results are validated by temperature rise experiment on prototype. Using the proposed model, the temperature rise and hot spot area can be predicted in advance, which could finally facilitate the design and performance evaluation of the 363 kV GI-VCB.INDEX TERMS Vacuum circuit breaker, temperature rise, coupled model, turbulence model, contact resistance.