<p>In this paper, a load balancing system is designed to balance the secondary phase currents of 11 kV/380 V, 50 Hz, 100 kVA power transformer in a three phase 4-wire, distribution network. The load balancing system is built of six identical modified static synchronous compensators (M-STATCOMs). Each M-STATCOM is constructed of a voltage source converter-based H-bridge controlled in capacitive and inductive modes as a linear compensating susceptance. The M-STATCOM current is controlled by varying its angle such that it exchanges pure reactive current with the utility grid. Three identical M-STATCOMs are connected in delta-form to balance the active phase currents of the power transformer, whereas the other three identical M-STATCOMs are connected in star-form to compensate for reactive currents. The M-STATCOMs in the delta-connected compensator are driven by 380 V line-to-line voltages, whilst, those connected in star-form are driven by 220 V phase voltages. The results of the 220 V and 380 V M-STATCOMs have exhibited linear and continuous control in capacitive and inductive regions of operation without steady-state harmonics. The proposed load balancing system has offered high flexibility during treating moderate and severe load unbalance conditions. It can involve any load unbalance within the power transformer current rating and even unbalance cases beyond the power transformer current rating.<strong></strong></p>